Disentangled Multi-Relational Graph Convolutional Network for Pedestrian Trajectory Prediction
نویسندگان
چکیده
Pedestrian trajectory prediction is one of the important tasks required for autonomous navigation and social robots in human environments. Previous studies focused on estimating forces among individual pedestrians. However, they did not consider groups pedestrians, which results over-collision avoidance problems. To address this problem, we present a Disentangled Multi-Relational Graph Convolutional Network (DMRGCN) socially entangled pedestrian prediction. We first introduce novel disentangled multi-scale aggregation to better represent interactions, pedestrians weighted graph. For aggregation, construct multi-relational graphs based distances relative displacements In step, propose global temporal alleviate accumulated errors changing their directions. Finally, apply DropEdge into our DMRGCN avoid over-fitting issue relatively small datasets. Through effective incorporation three parts within an end-to-end framework, achieves state-of-the-art performances variety challenging benchmarks.
منابع مشابه
Multi-channel Convolutional Neural Network Ensemble for Pedestrian Detection
In this paper, we propose an ensemble classification approach to the Pedestrian Detection (PD) problem, resorting to distinct input channels and Convolutional Neural Networks (CNN). This methodology comprises two stages: piq the proposals extraction, and piiq the ensemble classification. In order to obtain the proposals, we apply several detectors specifically developed for the PD task. Afterwa...
متن کاملT-CONV: A Convolutional Neural Network For Multi-scale Taxi Trajectory Prediction
Precise destination prediction of taxi trajectories can benefit many intelligent location based services such as accurate ad for passengers. Traditional prediction approaches, which treat trajectories as one-dimensional sequences and process them in single scale, fail to capture the diverse two-dimensional patterns of trajectories in different spatial scales. In this paper, we propose TCONV whi...
متن کاملEdge Attention-based Multi-Relational Graph Convolutional Networks
Graph convolutional network (GCN) is generalization of convolutional neural network (CNN) to work with arbitrarily structured graphs. A binary adjacency matrix is commonly used in training a GCN. Recently, the attention mechanism allows the network to learn a dynamic and adaptive aggregation of the neighborhood. We propose a new GCN model on the graphs where edges are characterized in multiple ...
متن کاملPedestrian Color Naming via Convolutional Neural Network
Color serves as an important cue for many computer vision tasks. Nevertheless, obtaining accurate color description from images is non-trivial due to varying illumination conditions, view angles, and surface reflectance. This is especially true for the challenging problem of pedestrian description in public spaces. We made two contributions in this study: (1) We contribute a large-scale pedestr...
متن کاملModeling Relational Data with Graph Convolutional Networks
Knowledge bases play a crucial role in many applications, for example question answering and information retrieval. Despite the great effort invested in creating and maintaining them, even the largest representatives (e.g., Yago, DBPedia or Wikidata) are highly incomplete. We introduce relational graph convolutional networks (R-GCNs) and apply them to two standard knowledge base completion task...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i2.16174